全站搜索
首页『金牛3娱乐』Register Page
首页『金牛3娱乐』Register Page
金牛3人工智能或改变药物研发游戏规则
作者:管理员    发布于:2021-07-24 06:57    文字:【】【】【

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  人工智能算法可用于专门设计与天然物质具有相同效果、但结构更简单的活性成分。在快速设计、制造、测试、分析循环中,将自动化、基于规则的分子构建与机器学习和实验验证很好地结合在一起。

  近日,瑞士苏黎世联邦理工学院(ETH)的科学家在《先进科学》杂志上发表文章,介绍了如何借助人工智能(AI)开发基于自然示例的新药。通过人工智能不仅可以识别天然物质的生物活性,还有助于找到与天然物质有相同效果,但更容易制造的分子。这一方法可以使未来设计新的、无专利的分子结构变得更容易,或许会改变医药研发的游戏规则。

  利用天然物质进行药物设计是开发现代创新药物的有效途径。据统计,在1939年至2016年间,美国食品药品监督管理局(FDA)批准的上市药物中50%以上含有天然物质的分子片段,或者直接来源于天然物质。相较于化学合成的小分子药物,天然物质在结构新颖性、生物相容性、功能多样性等方面具有明显的优势,并且在长期进化过程中经历了自然筛选的优化。

  天然物质的目标分子是潜在的药物靶点。确定活性天然物质的靶标蛋白和作用机制,是新药开发的关键。不过,要从多达40万种不同的人类蛋白质中找到药物的靶点并非易事。因此,苏黎世联邦理工学院的吉斯伯特·施奈德教授利用人工智能程序来帮助寻找天然物质可能的目标分子,从而在药理学上识别相关化合物。施耐德强调说:“以这种方式找到医学上重要的活性成分与靶蛋白组合的机会,比传统筛选要大得多。”

  研究人员选择从海洋链霉菌中提取的双吡咯化合物MarinopyrroleA来验证他们的人工智能算法。MarinopyrroleA不仅具有抗菌特性,还具有强大的抗癌活性。通过机器学习模型,研究人员将MarinopyrroleA在药理学上有意义的部分与相应的活性成分模式进行了比较,分析它们可能附着在哪些目标蛋白上。

  根据模式匹配,研究人员识别出细菌分子可以附着的8种人类受体和酶,它们与炎症、疼痛以及免疫系统有关。经过实验证实,MarinopyrroleA确实与大多数预测的蛋白质有可测量的相互作用。施耐德指出:“我们的人工智能方法可以缩小天然物质的蛋白质靶标范围,可靠性通常超过50%,从而简化了活性药物成分的搜索。”

  由于许多天然物质的结构相对复杂,实验室合成困难而且昂贵。因此,施耐德教授的研究团队进一步开发了另一个人工智能程序,用来寻找具有相同效果,但更简单且制造成本更低的天然物质的替代品。这个人工智能程序相当于一个“虚拟化学家”,它能够找到与自然模型结构不同,但化学功能相当的分子。根据算法设计,这样的分子还必须能够在最多3个合成步骤中生产,因此相对容易和便宜。

  为了确定合成路线,这个程序有一个目录,包含200多种起始材料、25000种市售的化学构建块和58个既定反应方案。在每个反应步骤之后,程序选择这些变体作为下一步的起始材料。

  同样以MarinopyrroleA为例,程序根据334个不同的基本结构找到了802个合适的分子。研究人员在实验室中制作了最好的4个,这些分子实际上显示出与自然模型非常相似的活性。它们对算法确定的8种目标蛋白中的7种具有相当的影响。

  研究人员随后详细检查了最有前途的分子。X射线结构分析表明,计算得到的化合物通过与该酶的已知抑制剂类似的方式,将自身附着在目标蛋白的活性位点上。换句话说,尽管结构不同,但人工智能程序发现的分子与目标模型具有相同的作用机制。

  实际上,施奈德教授和他的团队提出的集成方法,在快速设计、制造、测试、分析循环中,将自动化、基于规则的分子构建与机器学习和实验验证很好地结合在一起。施耐德教授说:“我们的工作证明,人工智能算法可用于专门设计具有相同效果、但结构更简单的活性成分。一方面,这有助于开发新药;另一方面,也使我们处于医学化学研究可能发生根本性变化的开始。”

  值得关注的是,借助苏黎世联邦理工学院的人工智能方法,人们可以找到同样有效但基于不同结构的现有药物的替代品。这可以使未来设计新的、无专利的分子结构变得更容易。

  但这也引发了更加激烈的争论:一方面,人工智能可以在多大程度上系统地规避药物专利保护?另一方面,“创造性”人工智能设计的分子是否能获得专利?未来随着该方法的进一步完善,制药行业将不得不调整其研究策略,以适应新的游戏规则。

  人工智能算法可用于专门设计与天然物质具有相同效果、但结构更简单的活性成分。在快速设计、制造、测试、分析循环中,将自动化、基于规则的分子构建与机器学习和实验验证很好地结合在一起。

  近日,瑞士苏黎世联邦理工学院(ETH)的科学家在《先进科学》杂志上发表文章,介绍了如何借助人工智能(AI)开发基于自然示例的新药。通过人工智能不仅可以识别天然物质的生物活性,还有助于找到与天然物质有相同效果,但更容易制造的分子。这一方法可以使未来设计新的、无专利的分子结构变得更容易,或许会改变医药研发的游戏规则。

  利用天然物质进行药物设计是开发现代创新药物的有效途径。据统计,在1939年至2016年间,美国食品药品监督管理局(FDA)批准的上市药物中50%以上含有天然物质的分子片段,或者直接来源于天然物质。相较于化学合成的小分子药物,天然物质在结构新颖性、生物相容性、功能多样性等方面具有明显的优势,并且在长期进化过程中经历了自然筛选的优化。

  天然物质的目标分子是潜在的药物靶点。确定活性天然物质的靶标蛋白和作用机制,是新药开发的关键。不过,要从多达40万种不同的人类蛋白质中找到药物的靶点并非易事。因此,苏黎世联邦理工学院的吉斯伯特·施奈德教授利用人工智能程序来帮助寻找天然物质可能的目标分子,从而在药理学上识别相关化合物。施耐德强调说:“以这种方式找到医学上重要的活性成分与靶蛋白组合的机会,比传统筛选要大得多。”

  研究人员选择从海洋链霉菌中提取的双吡咯化合物Marinopyrrole A来验证他们的人工智能算法。Marinopyrrole A不仅具有抗菌特性,还具有强大的抗癌活性。通过机器学习模型,研究人员将Marinopyrrole A在药理学上有意义的部分与相应的活性成分模式进行了比较,分析它们可能附着在哪些目标蛋白上。

  根据模式匹配,研究人员识别出细菌分子可以附着的8种人类受体和酶,它们与炎症、疼痛以及免疫系统有关。经过实验证实,Marinopyrrole A确实与大多数预测的蛋白质有可测量的相互作用。施耐德指出:“我们的人工智能方法可以缩小天然物质的蛋白质靶标范围,可靠性通常超过50%,从而简化了活性药物成分的搜索。”

  由于许多天然物质的结构相对复杂,实验室合成困难而且昂贵。因此,施耐德教授的研究团队进一步开发了另一个人工智能程序,用来寻找具有相同效果,但更简单且制造成本更低的天然物质的替代品。这个人工智能程序相当于一个“虚拟化学家”,它能够找到与自然模型结构不同,但化学功能相当的分子。根据算法设计,这样的分子还必须能够在最多3个合成步骤中生产,因此相对容易和便宜。

  为了确定合成路线,这个程序有一个目录,包含200多种起始材料、25000种市售的化学构建块和58个既定反应方案。在每个反应步骤之后,程序选择这些变体作为下一步的起始材料。

  同样以Marinopyrrole A为例,程序根据334个不同的基本结构找到了802个合适的分子。研究人员在实验室中制作了最好的4个,这些分子实际上显示出与自然模型非常相似的活性。它们对算法确定的8种目标蛋白中的7种具有相当的影响。

  研究人员随后详细检查了最有前途的分子。X射线结构分析表明,计算得到的化合物通过与该酶的已知抑制剂类似的方式,将自身附着在目标蛋白的活性位点上。换句话说,尽管结构不同,但人工智能程序发现的分子与目标模型具有相同的作用机制。

  实际上,施奈德教授和他的团队提出的集成方法,在快速设计、制造、测试、分析循环中,将自动化、基于规则的分子构建与机器学习和实验验证很好地结合在一起。施耐德教授说:“我们的工作证明,人工智能算法可用于专门设计具有相同效果、但结构更简单的活性成分。一方面,这有助于开发新药;另一方面,也使我们处于医学化学研究可能发生根本性变化的开始。”

  值得关注的是,借助苏黎世联邦理工学院的人工智能方法,人们可以找到同样有效但基于不同结构的现有药物的替代品。这可以使未来设计新的、无专利的分子结构变得更容易。

  但这也引发了更加激烈的争论:一方面,人工智能可以在多大程度上系统地规避药物专利保护?另一方面,“创造性”人工智能设计的分子是否能获得专利?未来随着该方法的进一步完善,制药行业将不得不调整其研究策略,以适应新的游戏规则。金牛3金牛3

相关推荐
  • 金牛3原料药龙头国邦医药今日启动申购
  • 金牛3人工智能或改变药物研发游戏规则
  • 金牛3注册【美·记闻】美迪西专题研讨会第13期 “药物发现关键技术加速药物研发”圆满召开
  • 金牛3娱乐人福医药:人福医药关于控股子公司投资建设原料药生产基地
  • 金牛3注册人福医药:公司子公司葛店人福拟在黄冈市投资建设原料药生产基地
  • 金牛3国邦医药:深耕医药、动保市场 成为全球化药制造产业链重要参与者
  • 金牛3娱乐积极投身公益恒瑞医药协办培训活动帮助增强医疗机构和从业者临床科研能力
  • 金牛3注册滨海新区携手天津中医药大学签署第二周期合作协议
  • 金牛3注册“神医”、“神药”、“名师”市场监管总局重拳出击查办医疗等违法广告678件教培类违法广告242件
  • 金牛3娱乐全国高等中医药院校党建与思政工作者齐聚陕西 共话发展
  • 脚注信息
    版权所有 Copyright(C)2020 金牛3娱乐
    网站地图|xml地图|友情链接: 百度一下